Modelling and Managing Deployment Costs of
Microservice-Based Cloud Applications

Philipp Leitner and Jirgen Cito
Department of Informatics
University of Zurich
Zurich, Switzerland

{leitner|cito}@ifi.uzh.ch

ABSTRACT

We present an approach to model the deployment costs, includ-
ing compute and IO costs, of Microservice-based applications de-
ployed to a public cloud. Our model, which we dubbed CostHat,
supports both, Microservices deployed on traditional IaaS or PaaS
clouds, and services that make use of novel cloud programming
paradigms, such as AWS Lambda. CostHat is based on a net-
work model, and allows for what-if and cost sensitivity analysis.
Further, we have used this model to implement tooling that warns
cloud developers directly in the Integrated Development Environ-
ment (IDE) about certain classes of potentially costly code changes.
We illustrate our work based on a case study, and evaluate the
CostHat model using a standalone Python implementation. We
show that, once instantiated, cost calculation in CostHat is compu-
tationally inexpensive on standard hardware (below 1 ms even for
applications consisting of thousand services and endpoints). This
enables its use in real-time for developer tooling which continually
re-evaluates the costs of an application in the background, while
the developer is working on the code.

1. INTRODUCTION

The cloud computing paradigm [5]] is by now a well-established
concept enabling the flexible provisioning of IT resources, includ-
ing computing power, storage and networking capabilities. While
academic research on cloud computing has in the past primarily
focused on backend and server-side issues, we are currently experi-
encing a surge of interest in cloud-based software development [[7].
A key question in this domain is how to enable developers to build
applications that are “cloud-native” [1]], as opposed to applications
that are merely migrated to cloud infrastructure. The Microservice
architectural style [25]] is nowadays commonly used as a baseline
for building applications that are resilient towards cloud outages,
and which are able to scale on a fine-granular basis, due to changes
in the application workload or performance fluctuations. Funda-
mentally, Microservice-based applications are an implementation
of the basic idea of service-oriented computing [[13]], whereas ap-
plications are built as a network of largely independent services

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

UCC’16, December 06-09, 2016, Shanghai, China
© 2016 ACM. ISBN 978-1-4503-4616-0/16/12... $15.00
DOI: http://dx.doi.org/10.1145/2996890.299690 1

Emanuel Stockli
Institute of Information Management
University of St. Gallen (HSG)
St. Gallen, Switzerland

emanuel.stoeckli@unisg.ch

communicating over standardized interfaces.

An implication of the on-demand, pay-as-you-go pricing model
as it is commonly used in cloud computing is that predicting the
monetary costs necessary to host a given application is often dif-
ficult. We have previously argued that today, deployment costs
are generally not a tangible factor for cloud developers [8]. In
Microservice-based cloud-native applications, this problem is even
more prevalent. While a team responsible for building and operat-
ing a specific (set of) services may be aware of the operational costs
of its own services, it is exceedingly difficult to estimate the cost
impact that a change will have on other services in the application.
For instance, a change in one service may lead to additional load
on services that it depends on, causing those services to scale out.
These effects are difficult to estimate during software development.

In this paper, we propose CostHat, a graph-based cost model
for Microservice-based applications. We consider two different
types of services, instance-backed services deployed either using
Infrastructure-as-a-Service (IaaS) or Platform-as-a-Service (PaaS)
clouds, and Lambda services. We discuss how this cost model
can be made actionable for cloud developers. Specifically, we dis-
cuss how the model can be used to conduct what-if analyses (e.g.,
analysing the cost impact of changes in the workload, such as an
increased number of users), and to estimate the cost implications
of new feature implementations or refactorings. We present a nu-
merical evaluation of CostHat, which shows that evaluating costs
in our model is computationally cheap on standard hardware, with
calculation times remaining at or below 1 ms even for applications
consisting of thousand services and endpoints. Our results show
that the CostHat model can be implemented efficiently enough to
foster real-time re-evaluation, which is necessary for the developer
support tooling we envision.

The rest of this paper is structured as follows. In Section 2] we
introduce the basic idea behind Microservices as well as CostHat.
In Section [3] we discuss implementation issues of CostHat, and
explain how developers can measure or predict the various param-
eters that go into CostHat. In Section 4] we explain different use
cases for CostHat. In Section[5.1] we discuss a Python-based im-
plementation of the model, an instantiation of the model for a case
study application, as well as numerical experiments that show that
the model can be re-evaluated quickly enough to support real-time
analysis. Section[6]discusses related research, and finally Section[7]
concludes the paper with lessons learned and an outlook on future
work.

http://dx.doi.org/10.1145/2996890.2996901

2. A GRAPH-BASED COST MODEL

We now introduce the fundamental CostHat model. We start by
defining lambda-backed and instance-backed Microservices as the
two fundamental service models supported by CostHat, followed
by a deep-dive into the underlying formal model. We conclude the
section with a recursive algorithm for workload and cost prediction.

2.1 Application Model

CostHat assumes applications to be based on a Microservices
architecture [1,[25]]. Such applications can be represented as a net-
work of loosely-coupled services, which interact over well-defined
remote interfaces. Each Microservice has limited scope and size,
and can be implemented using whatever technology stack is suit-
able for its domain [26]. Each Microservice provides a specific,
narrow business capability in the application. In this way, Mi-
croservices can be seen as a pragmatic implementation of the orig-
inal idea of service-oriented computing [[13]. An example of the
high-level architecture of a simple Microservice-based application
is given in Figure[T]

order

history

customers
recqmmend

products

»(/landing

4

banking
interface

7process_
payment

Customer-Facing
Web Interface

Figure 1: Snippet of the service architecture of a Microservice-
based Web store. Services are defined along domain functionality,
and provide one or more endpoints. Each service and endpoint
interacts with multiple other services and endpoints to implement
its functionality.

The Microservices paradigm is strongly tied to cloud computing
as a deployment platform, as one of the fundamental motivations
behind adopting Microservices is to enable fine-grained elasticity.
That is, every Microservice forms its own deployment unit, which
can be scaled independently of the rest of the application. A sim-
plified “canonical” schematic view of a Microservice is given in
Figure |Z| (a). Each service has a fixed API consisting of one or
more concrete endpoints (that is, functionality that the service is
providing) and a data backend. To carry out the actual computa-
tion, and to implement autoscaling and elasticity, the service uses a
pool of backing instances of varying size. This model can be imple-
mented on top of IaaS or many PaaS clouds [22], with or without
container technology, and using various data stores. Note that the
model makes no assumption on the data store being one or more
self-hosted databases, or a cloud data storage service, e.g., Ama-
zon RDS. Additional value-added services (e.g., monitoring) are
either implemented on a per-service level, or for the application as
a whole, e.g., through common libraries. In the following, we refer
to this canonical model as instance-backed Microservices.

In addition to the canonical model depicted in Figure 2] (a), we

Instance-Backed
Microservice

Lambda-Backed
Microservice

lept
Lambda
Function

API Backing
Instance
e

/epl Backing
Instance

Jep2 _ Data
Store

lep2
Lambda
Backing Function
Instance

(a)

(b)

Figure 2: Two simple architectural views of a Microservice. (a)
depicts a “canonical” service built on top of, for instance, an laaS
cloud, (b) shows a Microservice built on top of AWS Lambda or a
comparable cloud service.

can also consider a second type of service, following the form de-
picted in Figure 2] (b). This model, which we dub lambda-backed
Microservice, differs from instance-backed Microservices in that
the backing instances are entirely invisible to the service devel-
opers (they are managed by the cloud provider completely trans-
parently). This model represents a Microservice built on top of
so-called “serverless” cloud services, for instance AWS Lambd
However, this model can also be used to represent externally-hosted
pay-per-use services, which can be integrated into a Microservice-
based application.

2.2 Model Overview

CostHat models the costs of deploying and operating Microservice-
based applications in a cloud. We define the total deployment costs
of the application as the sum of operating each individual service in
the application. The three primary drivers of service costs are the
processing of domain functionality that the service is implement-
ing, how many requests per time period it needs to accommodate,
and in which quality (e.g., response time). Typically, the service
quality is seen as a approximately constant, with the service scaling
out to accommodate higher load at the expense of higher deploy-
ment costs, and vice versa for lower load.

Service Costs [100 $]

Requests [1000 per minute]

Figure 3: Schematic visualization of cloud cost for a lambda-
backed Microservice depending on number of requests per time
period it needs to handle.

Fundamentally, CostHat takes into account four cost factors for
each service, (1) compute costs (payment for the CPU time neces-
sary to process service requests), (2) costs of API calls (per-request
payment for each API call), (3) costs of 10 operations (payment
for, for instance, database or file system writes), and (4) costs of

Thttp://docs.aws.amazon.com/lambda/latest/dg/welcome.html

http://docs.aws.amazon.com/lambda/latest/dg/welcome.html

additional options (e.g., payment for elastic IP addresses). The
costs of additional options are generally constant, while the costs
of API calls and IO operations are approximately linearly depen-
dent on the number of requests that need to be handled. Finally, the
compute costs for operating a service also depend on the number
of requests. For lambda-backed Microservices, this dependency is
linear as well. This leads to a cost function for lambda-backed Mi-
croservices similar to the one sketched in Figure[3] where the costs
increase linearly with an increasing load on the service.

Service Costs [100 $]

Requests [1000 per minute]

Figure 4: Schematic visualization of cloud cost for an instance-
backed Microservice depending on number of requests per time
period it needs to handle.

For instance-backed Microservices, costs for API calls, IO, and
additional options remain as for lambda-based services. However,
for compute costs, which are often the most important cost factor
for operating cloud services, the connection between load and costs
is non-linear (see Figure[d). The “jumps” in this cost function rep-
resent load thresholds where the service is required to scale out to
an additional backing instance to keep the response time constant
under increasing load.

2.3 Cost Impact of Changes

Given that services in a Microservice-based application are highly
interconnected, changes in one service often impact the deployment
of other services. Consider the example in Figure[3] An initial ver-
sion of the recommend service delivers static recommendations
only (e.g., a fixed “top-10 products of the day” list). Imagine now
a change that lets this service deliver personalized recommenda-
tions based on previous orders instead. Hence, a new dependency
to the orderhistory service is added, and for each request to
the recommend/generate service endpoint, one or more ad-
ditional requests to the orderhistory/get endpoint become
necessary. Assuming that the recommend service will be used to
render the landing page of the Web shop, this will lead to substan-
tially increased load on the orderhistory service, likely requir-
ing it to scale out to maintain its service level, hence increasing the
operation costs of this service.

Even worse, as the orderhistory/get endpoint itself uses
the products/get endpoint, the additional load may also re-
quire the products service to scale out as well. Given that in-
dividual Microservices are often built and operated by different
teams [25]], these cost effects of local development decisions are
difficult to predict and manage. CostHat fundamentally aims to
make these network effects explicit, and support what-if and change
impact analysis for service developers, ultimately allowing them to
reason about the impact that their changes have on other parts of
the application at large (see Section[d).

2.4 CostHat

Based on these initial observations, we now define the CostHat
cost model for Microservice-based applications. The two major in-

products
/get
recommend
/generate
frontend
/landing

Initial Version

products

/get
orderhistory . recommend
/generate

/get

frontend
/landing

Updated Version

Figure 5: An update of the recommend service impacts the
orderhistory, and transitively, the product s, services.

gredients of CostHat are service call graph and service cost models,
which we discuss and formalize in the following.

2.4.1 Service Call Graph Model

A Microservice-based application is fundamentally a collection
of services s € S. Each service in turn consists of concrete end-
points {Se1, Se2, - - - Sei }, Sei € F. Each service endpoint s.; in-
teracts with its consumers (either the end user, in the case of user-
facing services, or other services) via requests » € R. Each request
has an originating service endpoint s., € E as well as a target
service endpoint s+ € E.

Given these preliminaries, the workload w$ that a service needs
to cover over a defined time period { € Z is now simply the number
of requests it receives at each endpoint in this time period, modeled
as a set of tuples w$ = {(sc1,711), (Se2,M2), - - -, (Sen, Mn) }, With
n; € N7 representing the request count of this type in the time
period. However, given the highly interconnected network struc-
ture of Microservice-based applications, each request r € R often
triggers a cascade of other requests in the application. This service
call graph is specific for a request type, and can be visualized as
directed acyclic graph (DAG). An example service call graph for a
request to frontend/landing (i.e., loading the landing page)
is given in Figure[f] The semantics of the edge weights in the graph
are explained below.

frontend
/landing

0.2
recommend orders customers
/generate /get /login
1 10 3.1 customers
/get

orderhistory products
/get /get

Figure 6: An example service call graph for requests to
frontend/landing.

Formally, the service call graph associated to a request to a given
endpoint e;c; € C'G can be modeled recursively as a set of out-
going requests {7e,1,7e¢,2, ... Ten}. Each outgoing request re ; is
a tuple {e,p), with e € E and p € RT. p can be understood
as the stochastically expected number of outgoing subrequests per
single incoming request for this endpoint. p < 1 represents the
case where a subrequest is required only for a subset of incoming

requests (e.g., the subrequest is triggered in a branching statement
in the endpoint implementation). p = 1 represents a one-to-one
mapping, where each incoming call results in one outgoing call.
p > 1 is the case where for every incoming request, on average
more than one outgoing request is triggered (e.g., through a loop in
the endpoint implementation). In the weighted DAG in Figure [§
edges are represented by the e elements, while the p elements are
represented via edge weights.

2.4.2 Service Cost Model

Each service s € S further causes total operations costs in a
given time period which are ultimately dependent on the number
of requests that need to be handled. In CostHat, this is represented
via service cost functions ¢, defined as in Equation[I} A cost func-
tion calculates the total deployment costs of a given service s in a
defined time period (.

c(s,0): 8, Z > RY 1)

The total costs of the system C'(¢) for a defined time period are
then defined as the sum of all service costs (Equation . The con-
crete form of a service cost function depends on whether the service
is lambda- or instance-backed.

C)=> 5,0)

seS

Lambda-Backed Microservices. For lambda-backed services,
the costs of each individual endpoint is independent of all other
endpoints of the service. Hence, the per-service costs are simply
the sum of costs of all endpoints, as in Equation 3]

M (se,n) 3

C(S, () = Z
¢

(se,n)Ewg

For each endpoint we consider cost factors ¢y € CF), that
linearly scale with the load parameters of the endpoint: CFy =
{capr,cro,ccmp}. These represent the per-request API costs,
compute costs, and costs of disk IO, as introduced in Section @
The cost for these factors is defined as ¢} L(e) E— R™. The de-
ployment costs for an endpoint of a lambda-based Microservice are
linearly dependent on the number of requests, as defined in Equa-
tion[d c¢ denotes other associated cost factors with operating an
endpoint that are constant in nature (i.e., do not scale with load),
such as fixed costs for elastic IP addresses.

Me,n) =nx < > c;\f(e)> + ¢z (e) “

cr€CFy

Instance-Backed Microservices. For instance-backed services,
a central notion to establish the per-service costs is the total load
on the service over all endpoints. To this end, we define a per-
request load factor for each endpoint ¢; € [0..1]. This load factor
represents the percentage of a single backing instance over a time
period ¢ that handling a request to endpoint e € E will occupy.
Using this concept, we derive the total number of backing instances
required for a service during a specific time period s,|(¢), with
Sp| 1 4 — N* in Equation [5| This function can be understood
as the number of backing instances that this service’s autoscaling
group needs to acquire during to cover the total workload over all
the service’s endpoints.

spQ) =1 D> sen)

¢

(se,n)€Ewg

With this information, we can now define a cost function for an
instance-backed Microservice (Equation [G).

C(S,C) = Cinst(s) S\b\(c) +

Z ("*(Z Cif(se))JrcéE(se))

(sem)€w§ ereCh

(6

The cost components for API calls and disk 1O are analogously
to lambda-backed Microservices. We denote these as c; € CF,,
with CF, = {capr,cro}. These are again defined as functions
ceple) 1 B — R*. ce, (e) again represents a constant cost term
that is independent of the load on the endpoint. The main differ-
ence of instance-backed services to lambda-backed ones is that the
compute costs are now defined as the number of instances that need
to be running times the per-instance costs. These are defined by
Cinst(s) : S — RT. Note that this factor is service-dependent
as different services may be hosted using different instance types
(e.g.,m4 .mediumor c2.xlarge in AWS EC2).

2.4.3 Calculating Total Costs

Combining the per-request service call graph models as defined
in Section2.4.T]and the service cost models defined in Section2.4.2]
now allows us to calculate the total deployment costs for a system
in a time period ¢. As a precondition, we need to establish the ex-
pected inward-facing workload, that is how many requests to each
e € FE are sent to the application from outside the system, e.g.,
are triggered by end users by loading a Web site. These inward-
facing requests are functionally identical to regular workload, and
are hence described analogously as two-tuples w’ § for each ser-
vice. This parameter needs to be either predicted based on previous
workloads, or assumed for what-if analysis (see Section E]) We
use w’¢ to denote the collection of all inward-facing workloads in
a time period.

Using this inward-facing workload, we can now calculate the re-
sulting workload, and consecutively C'({). Note that the service
call graph model associated to an endpoint ez, readily gives us
access to the information how many subrequests to which other
endpoint are expected to be triggered by an incoming request. Re-
calling the example in Figure [] every invocation of the endpoint
frontend/landing triggers a single request to the endpoint
recommend/generate and orderhistory/get, 0.2 requests
to orders/get and customers/login, and 10 requests to
customers/get. The endpoint products/get is invoked
from two different services, and hence receives an expected 0.2 -
3.1 4110 = 10.62 requests per single invocation of the landing
page frontend/landing.

This simple recursive basic principle is formalized in Listing []
to specify how C(¢) can be calculated assuming a given inward-
facing workload. The listing uses a Python-style syntax, but apply-
ing the same terminology as used throughout this section. However,
for two-tuples, we use a Python-style dictionary syntax for clarity
of expression (e.g., wi [e].n > 0). The exact calculation of C'(¢)
once the workload on all services w® is established is not shown
in the listing, as it follows immediately from the definitions in Sec-
tion[24.2] Note that this algorithm assumes service call graphs to
be cycle-free.

def calc_total_costs (w'c) :

777This function calculates C(()
for an inward-facing workload w'.
Step 1: calculate total workload
init_empty (wc)
for s S:
for e € se:
if wlilelm >0:
propagate_workload(
e, wilen, wt

)

Step 2: use Egn 2 and following
to calculate total costs
c) =0
for s€ S:
C(¢) += service_cost (s,()

return C(¢)
def propagate_workload(e, n, wg):

77/7This function updates wS for
the subrequests triggered by n
additional requests to endpoint e.’”’’
wé, [e]l.n += n
for er in esy:

propagate_workload (

er.e, N * er.p, w

)
def init_empty (wC) :

7/’/Initialize the workload data
structure empty’’”’
for s€ S:

for ec se:

ws[e].n =0

3. IMPLEMENTATION NOTES

Technically implementing the CostHat model in code is straight-
forward given the formalisms discussed in Section 2] As part of
our research, we have produced two separate implementations of
the model, in Java (and integrated into the Eclipse Integrated De-
velopment Environment, IDE), and in Python. The Java implemen-
tation is simplified, as it represents an earlier version of CostHat.
Details to this implementation are available in a different publica-
tion [30]. The Python implementation represents the version of the
CostHat model presented here. This implementation is available
onlineﬂ and forms the basis of the experimentation in Section
The Python implementation is a standalone tool that is not inte-
grated into any IDE. CostHat models and workloads are provided
to the tool in an XML language or via Python program code.

3.1 Instantiating CostHat for an Application
In addition to the pure implementation of the model, actually us-

ing CostHat requires developers to instantiate the model on their

own, for their specific Microservice-based application. This in-

Zhttps://github.com/xLeitix/costhat

cludes defining services, endpoints, call graphs, cost models, and
workloads. A comprehensive discussion of how these various model
parameters can be established for applications written using dif-
ferent technology and operated in different environments is out of
scope for this paper. However, we briefly discuss strategies, exist-
ing work, and tools that can serve as a starting point in Table[T}

4. USING COSTHAT MODELS

After instantiating the CostHat model for an application, it can
be used as basis for a variety of analyses and developer tool sup-
port. In the following, we present three examples without claim of
completeness.

4.1 Raising Developer’s Cost Awareness

Even independently of any deeper analysis, having access to a
CostHat model alone may already raise the cost awareness of de-
velopers that work on services in a Microservice-based application.
For instance, we have have observed in a previous study that devel-
opers deem cloud deployment costs to be an important, but often
intangible, metric [[7]. Our work can help make costs more explicit.
For instance, using CostHat, developers are enabled to explicitly
see what costs each service and endpoint is contributing to the total
deployment costs, as well as why (i.e., due to which interactions).
CostHat can also be used as basis for establishing per-customer de-
ployment costs, supporting business decisions on service pricing.

4.2 What-If Analysis

A core functionality enabled by CostHat are what-if analyses.
Essentially, once all parameters of the model are established (see
also Table[T)), developers can vary individual parameters to identify
the cost impact of changes. This enables developer support tooling
that can be used to, for instance, answer the question how the costs
would increase under increased inward-facing workload (varying
w'g), increased cloud instance prices (varying cinst(s)), or migra-
tion to a different cloud provider or instance type for an instance-
backed Microservice (varying all cost parameters). Further, using
what-if analysis, developers can also decide whether improving the
implementation of a service is worth the effort in terms of costs,
by analyzing the cost impact of a slightly lower e; for an endpoint
implementation. All of these analyses allow data-driven decision
making [2] in software development.

public class ProductController {
sos
* GET: returns all products
Y
BMicroserviceMethodDeclaration(method ~ "/products/all")
public ListeProductDT0> all(Request request, Response response) {
response. type("application/json");
return productStorage.values().stream().map(ProductDtoFactory: : create).collect(Collectors. tolist());
1
sos
* GET: returns one product by id
*/
BMicroserviceMethodDeclaration(method - "/products/:id")
pt e — . .
overall requests Product Service requests to this
method

Iproducts/:id

Overall requests per Cost Factors Requests per Callers (avg. requests)
second 2 instances second: 1. Checkout (0.649 req /
Min: 0 Max 1 regfs per Min: 0 second)

Avg: 1.619 instance Avg: 0.647
} Max:s USD 0.083 per instance Max: 2
b

Figure 7: Example of an Eclipse IDE integration of what-if analysis
using CostHat.

We have implemented an example of some of these analyses
as part of our Eclipse-based prototype for an earlier version of
CostHat. A core property of this example implementation is that
it integrates tightly with standard development tools, and allows

https://github.com/xLeitix/costhat

Parameter

Description

Services and their endpoints
(S, E)

For small service-based systems, the information which services are available and
which endpoints they provide may already be well-known to developers [26]. How-
ever, even if this is not the case, service repositories such as VRESCo [24] may be used
to automatically produce a service model.

Service call graphs for all end-
points (SCG)

The service call graph model described in Section [2.4.1]can essentially be established
in two ways: (1) post-hoc, by mining call traces and logs of previous executions of the
application; while technically not trivial, tools that support this kind of service depen-
dency mining exist (e.g., Dynatrace); (2) prior to deployment, by statically analysing
the source code implementing service endpoints for invocations of other services in
the system. In practice, a combination of both methods seems most promising. Min-
ing execution logs allows to relatively easily identify invocations across heterogeneous
service implementations, while static analysis enables the detection of rarely invoked
dependencies. Further, detecting node weights in service call graphs is not necessarily
possible using static code analysis alone.

Per-request cost
per service and

parameters
endpoint

Assuming some historical executions of the application, all of these cost parameters are
readily available from common cloud monitoring solutions (e.g., Amazon CloudWatch),

(capr,cro, and ccmp for | orcanbe derived from cloud monitoring data and cloud provider cost specifications with
lambda-backed services) little difficulty.
Constant costs per service | The request-independent costs per service are typically known to the service provider.

(ceysCee)

Hence, this parameter requires no specific technology support.

Load factors per endpoint of
instance-backed service (e;)

Similar to service call graphs, existing application performance monitoring (APM) so-
lutions such as Dynatrace can be used to establish the average number of concurrent
requests of a specific endpoint a single backend instance can handle.

Instance costs per instance-
backed service (Cinst(s))

This parameter is readily available from cloud provider cost specifications.

Inward-facing workload (w'$)

While it is evidently not possible to foresee the inward-facing workload for a future
time interval exactly, DevOps engineers and operators of existing services tend to have
reasonably accurate (explicit or implicit) prediction models for expected workloads.
Further, this parameter is often used as the basis for what-if analysis anyway (see also

Section[#.72).

Table 1: Summary of CostHat parameters and basic implementation strategies.

for what-if analysis directly in the source code. This avoids men-
tally taxing context switches, and is conceptually similar to the idea
of feedback-driven development (which we have previously pre-
sented [8]). An example screenshot that illustrates the idea is given
in Figure

4.3 Predicting Costs of Code Changes

A CostHat use case that is somewhat more elaborated than what-
if analysis is the pre-deployment prediction of the impact of given
code changes on the deployment costs. The fundamental idea here
is similar to what-if analysis, but rather than varying workload or
cost parameters, we now analyze the impact of changes in the ser-
vice call graph model. This includes adding a new edge to the ser-
vice call graph (predicting the impact of adding a new service invo-
cation), removing edges (removing service invocations), or moving
a service implementation into a loop.

availabilityServiceClient . GFPFGAUEE(requestedPraduct . getId());

/7 return product as data) _ .
return ProductDtoFactory.c Product Service AvailabilityServicaClient

Frequency Expected impact

Min: 0 requests per second New instances: 1 instances
Avg: 1,639 requests per second Additional costs per hour: 1 USD
Max: 4 requests per second Cost Trend: 200 %

New Invocation
lonstructor ofProduct
ic ProductController() {
this.gson = new Gson();

Stat
this.availabilityServiceCl o

Figure 8: Example of a prototypical Eclipse IDE integration that
implements cost prediction for code changes based on CostHat.

Our Eclipse-based prototype contains a simplified version of this

idea (Figure [). The prototype is able to discover when a code
change would introduce a new service invocation via static code
analysis, recalculates the CostHat model in the background, and
produces a code-level warning (including detailed analysis screen,
which leads back to a what-if analysis) if the predicted added cost
are above a defined threshold.

5. EVALUATION

We showcase and evaluate the CostHat model in two dimensions.
Firstly, we illustrate the basic idea behind the model with a simple
Python-based implementation and using the example introduced
in Figure[T] Secondly, we numerically show that it is possible to
quickly (re-)evaluate the costs of even large Microservice-based
applications using CostHat, enabling real-time service developer
tools, such as the ones envisioned in Section 4

5.1 Case Study

We assume that the case study application is deployed in AWS,
using a combination of EC2 and Lambda services. The endpoint
banking_interface is an external service that is charged on
a per-use basis. We model the CostHat parameters of this case
based on our previous experience benchmarking Web applications
in AWS [3[/17]]. For pricing (e.g., EC2 hourly instance prices, or
Lambda per-request costs), we assume real-life AWS pricing for
North America at the time of writing, and for on-demand instances.
In total, this case study consists of 7 services and 11 endpoints. The
CostHat model for the case is publicly available on GitHub along

frontend | recommend | orders | products | customers | order_hi | banking_if Total
Baseline 3.35% 11.51$ 3.24% 1.04$ 18.32% 21.85% 13.54% 72.85%
Scenario 1 6.37% 11.51% 6.36% 1.09% 18.32% 36.85% 27.09% 107.59%
Scenario 2 3.35% 15.34$ 3.24% 1.30% 18.32 % 21.85% 13.54% 76.95%
Scenario 3 3.35% 11.51$ 3.24% 1.04$ 18.32% 21.48% 13.54% 72.48%
Scenario 4 3.35% 11.51% 3.24% 1.04$ 18.84% 21.85% 13.54% 73.38%

Table 2: CostHat deployment cost calculations in US dollars per hour for the case study. The baseline represents the deployment costs of the
application as modeled, while the four scenarios represent various illustrative changes and analyses.

with the Python implementation of the model.

Table 2] provides the total hourly deployment costs as calculated
by CostHat. Firstly, we evaluate the costs for the application as
modelled. Afterwards, we conduct what-if analysis on the model as
discussed in Section@ and evaluate the following four scenarios.
It should be noted that these scenarios represent examples rather
than a comprehensive list of analyses that are enabled by CostHat.

e Scenario 1 — Improved conversion rate. This scenario as-
sumes that the Web shop is able to improve its conversion
rate, i.e., that twice as many users that use the service end-
point frontend/landing also end up using the endpoint
frontend/order. Evidently, the increased conversion
rate has ripple effects through the entire application, leading
to substantially higher deployment costs. While improving
the conversion rate may still make business sense, the re-
sponsible DevOps engineers will need to keep these effects
in mind.

Scenario 2 — External pressure on the recommender en-
gine. This scenario evaluates what would happen if the ser-
vice recommend would start to be used in a different ap-
plication as well, leading to substantial additional external
pressure. This additional workload unsurprisingly leads to
higher costs for hosting the recommend service, but depen-
dencies of this service get slightly more expensive as well.

Scenario 3 — Instance type migration for the orderhis-
tory service. In this scenario, the DevOps engineers are
evaluating whether to migrate the order_history ser-
vice from using expensive 12 . x1large instances to cheaper
m4 .2xlarge instances. The analysis shows that all things
considered CostHat predicts the costs to remain close to con-
stant after the migration. Hence, the DevOps engineers may
decide that conducting this migration is not worth their time
in the current setup.

Scenario 4 — Impact of code change. This scenario illus-
trates the idea described in Section[d.3] and evaluates the cost
impact of a planned code change that introduces a new de-

pendency of recommend/generatetocustomers/get.

The analysis shows that this additional dependency will lead
to a modest 0.90$ per hour additional costs. In isolation,
this is likely unproblematic, however, the team will need to
stay aware of the added costs of code changes, as such small
expenses may add up over time if many dependencies are
added.

5.2 Experimentation

This experiment aims to address the question how computation-
ally expensive (re-)evaluating the CostHat model is. To this end, we
evaluate the time necessary for cost computation for automatically
generated Microservice networks, for which we gradually increase

network size (in number of services and endpoints) and connected-
ness (in number of endpoint-to-endpoint connections, i.e., service
calls).

5.2.1 Experiment Setup

As basis for this evaluation, we use a script, which is also avail-
able on the GitHub page that hosts the Python implementation, to
artificially generate CostHat models. We evaluate two scenarios.
In the network size scenario, we gradually increase the number of
nodes in the network, and observe how the time necessary to cal-
culate the total deployment costs depends on this parameter. In
this scenario, we assume that each endpoint has between 0 and 10
outgoing service calls. In the connectedness scenario, we keep the
number of nodes in the network fixed to 5000, but vary the total
number of edges. We repeat each scenario for both, lambda- and
instance-backed services. All other parameters (e.g., capr Or cro)
remain fixed through all experiments, as they do not influence the
time necessary to calculate costs. The basic parameters of our ex-
periments are summarized in Table 3]

Network Size Connectedness
Scenario Scenario
Nodes [10..8000] 5000
(Services and Endpoints)
Edges [0..10] per node | [100..8000] total
(Service Calls)

Table 3: Basic parameters of the experiment setup.

All experiments have been conducted on a standard Macbook
Pro with a 2.8 GHz Intel Core i7 processor and 16 GB RAM. The
test machine was running OS X El Capitan.

5.2.2 Results

Figure] depicts the results for the network size scenario. The
y-axis shows the time in milliseconds necessary to evaluate the to-
tal deployment costs of the model 100 times. First and foremost,
we observe that the total time necessary to evaluate the costs of
an application using CostHat is very low. Even for large service
networks, calculating one single cost model never takes more than
8 milliseconds on the test machine (broken down from 100 calcu-
lations). For networks at or below 1000 nodes, the re-calculation
time stays below 1 millisecond. In addition, we observe that for
both, lambda- and instance-backed services, the time necessary to
calculate costs linearly depends on the number of nodes in the net-
work. The costs of lambda-backed services can be evaluated faster
than the costs of instance-backed services.

Figure [T0] shows the results for the connectedness scenario. For
instance-backed services, we again observe a linear dependency be-
tween the total number of service calls in the application, and the
time necessary to calculate the total deployment costs. For lambda-
backed services, no clear dependency could be established in these

Backed
[\ m= Instance
Lambda

Duration of 100 Cost Calculations [ms]
<

of Nodes

Figure 9: Time necessary to calculate the total costs of a CostHat
model 100 times depending on the number of services and end-
points in the model.

Backed
e Instance
| N\ Lambda

Duration of 100 Cost Calculations [ms]

N

1000 2000 3000 4000 5000 6000 7000 8000
of Service Calls

Figure 10: Time necessary to calculate the total costs of a CostHat
model 100 times depending on the total number of service calls in
a network of 5000 services and endpoints.

experiments. However, it is evident for both types of services that
the cost calculation duration depends more on the number of ser-
vices and endpoints in the system than on the sizes of the service
call graphs.

6. RELATED WORK

Costs in Microservice-based applications arise as soon as incom-
ing requests trigger computation within the service, or as soon as
cloud resources are allocated in case of instance-backed Microser-
vices. As a consequence, our work bears some similarities to re-
search concerned with cost-efficient cloud resource management
(e.g., [15]). As the demand for cloud resources is often highly vari-
able, a plethora of research aims at predicting future demand, for
instance future workload (capacity planning). However, these re-
search endeavours ground in a fundamentally different objective,
namely, to make allocation, provisioning and scheduling decisions,
either on cloud provider side to minimize monetary cost while pro-
viding a viable service [9}|12,[31], or on cloud user side to help
solving various optimization problems. These include cost mini-

mization or performance maximization problems for a given work-
load [23}/31]], cost trade-off decisions between scaling up/out or ac-
cepting to delay incoming requests [18|29] (which often includes
the challenge of monitoring SLAs [10]), or modelling budget con-
straints and time constraint decisions [[19-21]].

In contrast to this research, CostHat has its focus on Microser-
vices which are permanently running in the cloud. We further dif-
fer fundamentally from the previously mentioned work in that we
consider the provisioning of cloud resources as a blackbox, which
occurs automatically based on an autoscaling unit keeping the qual-
ity in terms of response time and throughput constant. Still, there
seems to be a general shift from reactive towards proactive cloud
resource management, whereof our proposed use case of increas-
ing developerdAZs awareness about their actual and potential fu-
ture cloud resource costs may be seen as an extreme form of proac-
tive cloud resource management and a next step towards building
cloud-native applications [[1].

Furthermore, our model has similarities to the prototype pro-
posed in [28]], which enables what-if analysis in complex distributed
data center applications. They also use a graph-based approach to
model service calls and response times (in addition to harnessing
queuing theory). By offering a custom query language they fa-
cilitate a what-if analysis of hypothetical changes in the applica-
tiondAZs workload or environment and estimate its impact on per-
formance. In contrast, we link the service call graph with service
cost models. This novel combination serves as a basis to predict
the cost impact of a certain potential (what-if) or actual change of
the invocation pattern of a certain service endpoint.

However, the problem of collecting tracing data of invocations
between individual service (endpoints) is more general as it is re-
quired for a variety of endeavours, (e.g., performance monitoring,
QoS monitoring, and others). Therefore, a vast body of knowl-
edge is available about how to generate service call graphs auto-
matically. Dynamic approaches that collect data after deployment
and during production are widely discussed in research (e.g., [24]),
by companies such as Google [27], and have led to a variety of
tools (e.g., Dynatrac. In this paper, we primarily use a sim-
plified approach based on probabilistic expected values to model
communication patterns in the service call graph. A broad range
of related work discussed models of incoming requests based on
statistical time series analysis using Fast Fourier Transform (FFT)
and Markov chains [11]], autoregressive models [|6,|16], linear re-
gression, and neural networks [14].

Furthermore, Microservice-based applications as a collection of
independent services can be seen as a pragmatic implementation of
service-oriented systems [13]]. However, to the best of our knowl-
edge, this is the first approach that brings together service call
trace data with cloud cost models. Being able to link propagation
patterns of calls between service endpoints with costs, provides a
unique basis for a variety of analyses, whereof a few have been
discussed in Section 4]

One of the use cases of the CostHat approach is within cloud
developer tooling directly in the IDE, which allows for cost analy-
sis of code changes without requiring a context switch. This es-
tablishes a connection to research to Feedback-Driven Develop-
ment [4,[8]. However, it is crucial to note that the use of the pro-
posed CostHat model is not limited to pre-deployment tooling. To
date, most cost monitoring applications offered by cloud providers
(e.g., Amazon Cloud Watch) provide cost information on an instance-
or service-level. In contrast, CostHat dives deeper into details as the

*http://www.dynatrace.com
*https://aws.amazon.com/cloudwatch/

http://www.dynatrace.com
https://aws.amazon.com/cloudwatch/

cost data is linked to the service call graph.

7. CONCLUSIONS

In this paper, we propose a graph-based model of the deploy-
ment costs of Microservice-based applications. The CostHat model
can be used for applications that use canonical instance-backed Mi-
croservices, as well as ones that are implemented on top of AWS
Lambda or similar services. CostHat models costs caused by IO,
compute, API calls, and other constant cost factors, and can model
the total deployment costs depending on the call patterns between
services in the Microservice-based application. In addition to the
basic model, we have also presented initial ideas on how to extract
a CostHat model from a production application. Further, we have
illustrated use cases of CostHat through two example implementa-
tions, one integrated into the Eclipse IDE and another standalone in
Python. We also provide this Python implementation of the model
as open source software.

We have evaluated our work based on a small case study and via
scalability experiments using the Python implementation. The case
study has illustrated that CostHat can be used in a variety of devel-
oper and DevOps support scenarios. The conducted scalability ex-
periments have shown that evaluating even large service networks
is computationally cheap, typically in the sub-microsecond range.
Hence, value-added tools such as the ones proposed in Section 4]
which require constant re-evaluation of CostHat models to give de-
velopers real-time feedback directly in their IDE, are possible.

7.1 Future Research Directions

The presented work requires future work in two directions. On
the one hand, it is necessary to better support or automate the pro-
cess of instantiating a CostHat model from a concrete application,
as discussed in Section[d] Tools are needed that are able to (semi-
)automatically analyze logs to identify services and endpoints, or
to construct service call graphs. Further, establishing concrete per-
request IO API costs, or load factors for instance-backed services
is not necessarily easy for Devops engineers, and requires further
technical and conceptual support. On the other hand, we plan to
conduct more work on concrete developer-facing tools that build
on top of CostHat, such as the examples already given in Section[d]
In order to do so, studies are needed that investigate which deploy-
ment cost related questions developers and DevOps engineers typ-
ically need to answer, so as to provide the right kind of tooling.

Acknowledgments

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 610802 (CloudWave), and from
the Swiss National Science Foundation (SNF) under project MINCA
(Models to Increase the Cost Awareness of Cloud Developers).

8. REFERENCES

[1] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Microservices
Architecture Enables DevOps: Migration to a Cloud-Native
Architecture. IEEE Software, 33(3):42-52, May 2016.

[2] A.Begel and T. Zimmermann. Analyze This! 145 Questions
for Data Scientists in Software Engineering. In Proceedings
of the 36th International Conference on Software
Engineering, ICSE 2014, pages 12-23, New York, NY, USA,
2014. ACM.

[3] A. H. Borhani, P. Leitner, B. S. Lee, X. Li, and T. Hung.

WPress: An Application-Driven Performance Benchmark for
Cloud-Based Virtual Machines. In Proceedings of the 2014

(4]

(5]

[6

—_

[7

—

[8

—

[9

—

(10]

(1]

(12]

[13]

[14]

[15]

[16]

IEEE 18th International Enterprise Distributed Object
Computing Conference (EDOC), pages 101-109, Sept 2014.
D. Bruneo, T. Fritz, S. Keidar-Barner, P. Leitner, F. Longo,
C. Marquezan, A. Metzger, K. Pohl, A. Puliafito, D. Raz,

A. Roth, E. Salant, I. Segall, M. Villari, Y. Wolfsthal, and

C. Woods. CloudWave: where Adaptive Cloud Management
Meets DevOps. In Proceedings of the Fourth International
Workshop on Management of Cloud Systems (MoCS 2014),
2014.

R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and

L. Brandic. Cloud Computing and Emerging IT Platforms:
Vision, Hype, and Reality for Delivering Computing as the
5th Utility. Future Generation Computing Systems,
25:599-616, 2009.

A. Chandra, W. Gong, and P. Shenoy. Dynamic Resource
Allocation for Shared Data Centers using Online
Measurements. ACM SIGMETRICS Performance Evaluation
Review, 31(1):300, 2003.

J. Cito, P. Leitner, T. Fritz, and H. C. Gall. The Making of
Cloud Applications: An Empirical Study on Software
Development for the Cloud. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering
(ESEC/FSE), pages 393-403, New York, NY, USA, 2015.
ACM.

J. Cito, P. Leitner, H. C. Gall, A. Dadashi, A. Keller, and

A. Roth. Runtime Metric Meets Developer - Building Better
Cloud Applications Using Feedback. In Proceedings of the
2015 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software
(Onward! 2015), New York, NY, USA, 2015. ACM.

J. Doyle, V. Giotsas, M. A. Anam, and Y. Andreopoulos.
Cloud Instance Management and Resource Prediction for
Computation-as-a-Service Platforms. In Proceedings of the
2016 IEEE International Conference on Cloud Engineering
(IC2E, pages 89-98, Apr. 2016.

A. Garcia Garcia, I. Blanquer Espert, and

V. Herndndez Garcia. SLA-Driven Dynamic Cloud Resource
Management. Future Generation Computing Systems,
31:1-11, 2014.

Z. Gong, X. Gu, and J. Wilkes. PRESS: PRedictive Elastic
ReSource Scaling for Cloud Systems. Proceedings of the
2010 International Conference on Network and Service
Management (CNSM 2010), pages 9-16, 2010.

A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The
Cost of a Cloud: Research Problems in Data Center
Networks. SIGCOMM Computing Communications Review,
39(1):68-73, Dec. 2008.

M. N. Huhns and M. P. Singh. Service-Oriented Computing:
Key Concepts and Principles. IEEE Internet Computing,
9(1):75-81, Jan. 2005.

S. Islam, J. Keung, K. Lee, and A. Liu. Empirical Prediction
Models for Adaptive Resource Provisioning in the Cloud.
Future Generation Computing Systems, 28(1):155-162,
2012.

B. Jennings and R. Stadler. Resource Management in Clouds:
Survey and Research Challenges. Journal of Network and
Systems Management, 23(3):567-619, 2 Mar. 2014.

G. Jung, M. a. Hiltunen, K. R. Joshi, R. D. Schlichting, and
C. Pu. Mistral: Dynamically Managing Power, Performance,
and Adaptation Cost in Cloud Infrastructures. Proceedings of
the International Conference on Distributed Computing
Systems, pages 62—73, 2010.

(171

(18]

[19]

[20]

[21]

[22]

[23]

P. Leitner and J. Cito. Patterns in the Chaos — a Study of
Performance Variation and Predictability in Public IaaS
Clouds. ACM Transactions on Internet Technology, 2016.

P. Leitner, W. Hummer, B. Satzger, C. Inzinger, and

S. Dustdar. Cost-Efficient and Application SLA-Aware
Client Side Request Scheduling in an
Infrastructure-as-a-Service Cloud. In Proceedings of the
2012 IEEE 5th International Conference on Cloud
Computing (CLOUD), pages 213-220. ieeexplore.ieee.org,
June 2012.

M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski. Cost-
and Deadline-Constrained Provisioning for Scientific
Workflow Ensembles in IaaS Clouds. In Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), page 22, Los
Alamitos, CA, USA, 10 Nov. 2012. IEEE Computer Society
Press.

M. Mao and M. Humphrey. Scaling and Scheduling to
Maximize Application Performance within Budget
Constraints in Cloud Workflows. In Proceedings of the 2013
IEEE 27th International Symposium on Parallel Distributed
Processing (IPDPS), pages 67-78. ieeexplore.ieee.org, May
2013.

M. Mao, J. Li, and M. Humphrey. Cloud Auto-Scaling with
Deadline and Budget Constraints. In Proceedings of the 2010
11th IEEE/ACM International Conference on Grid
Computing, pages 41-48. ieeexplore.ieee.org, Oct. 2010.

P. Mell and T. Grance. The NIST Definition of Cloud
Computing. Technical Report 800-145, National Institute of
Standards and Technology (NIST), Gaithersburg, MD,
September 2011.

R. Mian, P. Martin, and J. Vazquez-Poletti. Provisioning
Data Analytic Workloads in a Cloud. Future Generation
Computing Systems, 29(6):1452-1458, 2013.

[24]

[25]
[26]

[27]

(28]

[29]

(30]

(31]

A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar.
End-to-End Support for QoS-Aware Service Selection,
Binding, and Mediation in VRESCo. IEEE Transactions on
Services Computing, 3(3):193-205, July 2010.

S. Newman. Building Microservices. O’Reilly, 2015.

G. Schermann, J. Cito, and P. Leitner. All the Services Large
and Micro: Revisiting Industrial Practice in Services
Computing. In Proceedings of the 11th International
Workshop on Engineering Service Oriented Applications
(WESOA’15), 2015.

B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a
Large-Scale Distributed Systems Tracing Infrastructure.
Technical report, Google, Inc., 2010.

R. Singh, P. Shenoy, M. Natu, V. Sadaphal, and H. Vin.
Predico: a System for What-If Analysis in Complex Data
Center Ppplications. In Proceedings of the 12th International
Middleware Conference, pages 120-139, 2011.

M. Smit and E. Stroulia. Configuration Decision Making
Using Simulation-Generated Data. In

E. Michael Maximilien, G. Rossi, S.-T. Yuan, H. Ludwig,
and M. Fantinato, editors, Proceedings of the International
Conference on Service-Oriented Computing (ICSOC),
Lecture Notes in Computer Science, pages 15-26. Springer
Berlin Heidelberg, 7 Dec. 2010.

E. Stockli. Feedback Driven Development — Predicting the
Costs of Code Changes in Microservice Architectures based
38 1Rjuntime Feedback. Master’s thesis, University of Zurich,
K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos,

D. Paparas, and A. Delis. Flexible Use of Cloud Resources
Through Profit Maximization and Price Discrimination. In
Proceedings of the 2011 IEEE 27th International Conference
on Data Engineering (ICDE), pages 75-86, Apr. 2011.

	Introduction
	A Graph-Based Cost Model
	Application Model
	Model Overview
	Cost Impact of Changes
	CostHat
	Service Call Graph Model
	Service Cost Model
	Calculating Total Costs

	Implementation Notes
	Instantiating CostHat for an Application

	Using CostHat Models
	Raising Developer's Cost Awareness
	What-If Analysis
	Predicting Costs of Code Changes

	Evaluation
	Case Study
	Experimentation
	Experiment Setup
	Results

	Related Work
	Conclusions
	Future Research Directions

	References

